Free Cell Attachments and the Rational Homotopy Lie Algebra

نویسنده

  • PETER BUBENIK
چکیده

Given a space X let LX denote its rational homotopy Lie algebra π∗(ΩX) ⊗ Q. A cell attachment f : ∨iSi → X is said to be free if the Lie ideal in LX generated by f is a free Lie algebra. This condition is shown to be general in the following sense. Given a space X with rational cone length N , then X is rationally homotopy equivalent to a space constructed using at most N + 1 free cell attachments. Algebraically, differential graded Lie algebras (dgLs) over Q are shown to be equivalent to separated dgLs. These results provide a method for calculating the rational homotopy Lie algebra and the homology of dgLs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separated Lie Models and the Homotopy Lie Algebra

A simply connected topological space X has homotopy Lie algebra ( X) Q. Following Quillen, there is a connected di erential graded free Lie algebra (dgL) called a Lie model, which determines the rational homotopy type of X , and whose homology is isomorphic to the homotopy Lie algebra. We show that such a Lie model can be replaced with one that has a special property we call separated. The homo...

متن کامل

Cell Attachments and the Homology of Loop Spaces and Differential Graded Algebras

Cell Attachments and the Homology of Loop Spaces and Differential Graded Algebras Peter G. Bubenik Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2003 Let R be a subring of Q containing 1 6 or R = Fp with p > 3. Let (A, d) be a differential graded algebra (dga) such that its homology, H(A, d), is R-free and is the universal enveloping algebra of some Lie algebra L...

متن کامل

Disconnected Rational Homotopy Theory

We construct two algebraic versions of homotopy theory of rational disconnected topological spaces, one based on differential graded commutative associative algebras and the other one on complete differential graded Lie algebras. As an application of the developed technology we obtain results on the structure of Maurer-Cartan spaces of complete differential graded Lie algebras.

متن کامل

4 Homotopy Operations and Rational Homotopy Type

In [HS] and [F1] Halperin, Stasheff, and Félix showed how an inductively-defined sequence of elements in the cohomology of a graded commutative algebra over the rationals can be used to distinguish among the homotopy types of all possible realizations, thus providing a collection of algebraic invariants for distinguishing among rational homotopy types of spaces. There is also a dual version, in...

متن کامل

Tame Homotopy Theory

space is said to be rational if its homotopy groups are rational vector spaces. Quillen has shown that up to homotopy there is a one-one correspondence between rational spaces and differential graded Lie algebras over 0. Call a two-connected space tame if the divisibility of its homotopy groups increases with dimension just quickly enough to prevent stable k-invariants from appearing. We will s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004